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We develop a mixed model approach of quantitative trait locus
(QTL) mapping for a hybrid population derived from the crosses of
two or more distinguished outbred populations. Under the mixed
model, we treat the mean allelic value of each source population
as the fixed effect and the allelic deviations from the mean as
random effects so that we can partition the total genetic variance
into between- and within-population variances. Statistical infer-
ence of the QTL parameters is obtained by using the Bayesian
method implemented by Markov chain Monte Carlo (MCMC). This
unified QTL mapping algorithm treats the fixed and random model
approaches as special cases of the general mixed model method-
ology. Utility and flexibility of the method are demonstrated by
using a set of simulated data.

S tudies of the genetic basis for population differentiation are
usually performed by methods of quantitative trait loci

(QTL) analysis in line crossing experiments (1), each population
being treated as an inbred line. Unfortunately, most natural
populations are not inbred. Developing inbred lines and then
conducting QTL analysis are unrealistic for some organisms. A
common practice is to select a single parent from each popula-
tion to form a cross. This approach may be practical for plants,
but is not applicable for most animals because of their low
fertility. In addition, a single parent may not be a good repre-
sentative of the population from which the parent is sampled.
Results obtained from this single cross may not represent the
actual population difference, but largely reflect the genetic
sampling error. These problems can be solved by sampling
multiple parents from each population. Unfortunately, an opti-
mal statistical method has not been available for such a design.
Haley et al. (2) developed a least-squares method to map QTL
in crosses between segregating populations, assuming that alleles
of QTL have fixed alternatively between populations. The
least-squares method will not detect QTL that have similar allele
frequencies in the two populations. This is primarily because
information comes from mean differences between populations.
Another obvious flaw of the least-squares method is that the
within-population variances will not disappear simply because
they are not included in the model; rather, they will be absorbed
by the residual variance. A large residual variance will decrease
the power of QTL detection.

In this study, we develop a mixed model framework that allows
the partitioning of the total genetic variance into within- and
between-population variances. We show that the mixed model
approach provides a unified QTL mapping algorithm in which
we can analyze data collected from any complicated mating
designs.

Mixed Model
Throughout the study, the genetic parameters are defined ex-
clusively in terms of allelic rather than genotypic values. We
consider only a single locus in the description of the mixed model
methodology, although multiple loci will be used in the simula-
tion study. For simplicity, we consider two source populations
only. Let us define the expectation and variance of the allelic
values for population one by b1 and s1

2, respectively, and the
corresponding parameters for population two by b2 and s2

2. For
diploid organisms, both the mean and variance of the additive
genetic values take twice the values of their allelic counterparts.

The total additive genetic variance of the combined population
in the current generation (before the cross) is sA

2 5 s1
2 1 s2

2 1
(b1 2 b2)2.

Let 1⁄2 n1 and 1⁄2 n2 be the numbers of founders from popu-
lations one and two, respectively. Assume that a parent from one
population has an equal chance to mate with any parents from
the other population. The mating of the F1s are completely
arbitrary so that the alleles of the two original populations are
well integrated into the hybrid population. We can take F2 as our
mapping population, but including advanced generations can be
more efficient because alleles from different populations are
better integrated. Unfortunately, such a mating design produces
complex pedigrees that prevent the use of a simple statistical
method. In the next section, we will introduce a Bayesian method
for mapping QTL in complex pedigrees. Assume that there are
N individuals in the mapping population. We define the effects
of the paternal and maternal alleles of individual j by vj

p and vj
m,

respectively, for j 5 1, . . . , N. The phenotypic value of
individual j can be described by the following linear model:

yj 5 m 1 vj
p 1 vj

m 1 «j , [1]

where m is the population mean (fixed effect) and «j is the
residual error with a N(0, s«

2) distribution. Using the notation of
Fernando and Grossman (3), we define vp

p and vp
m as the paternal

and maternal alleles for the father of j so that vj
p 5 zj

pvp
p 1 (1 2

zj
p)vp

m, where zj
p indicates the allelic inheritance of the paternal

allele of the father. Similarly, define vm
p and vm

m as the paternal
and maternal alleles of the mother and vj

m 5 zj
mvm

p 1 (1 2 zj
m)vm

m,
where zj

m indicates the allelic inheritance of the paternal allele
of the mother. The above model can be rewritten as

yj 5 m 1 zj
pvp

p 1 ~1 2 zj
p!vp

m 1 zj
mvm

p 1 ~1 2 zj
m!vm

m 1 «j .
[2]

We have now expressed the allelic values of the current
generation as linear functions of the allelic values of their
parents. The parental alleles can be further expressed as a linear
function of the allelic values of their parents. With such a
recursive process, each allele can be traced back to its origin in
the two founder populations. Let us group the effects of the n 5
n1 1 n2 founder alleles into an n 3 1 vector named v. The
elements of v are sorted by source population, the identification
number (ID) of each founder within a source population and
parental origin of each allele within a founder (paternal followed
by maternal). Note that the IDs of founders are numbered from
1 to 1⁄2 n. Consider a hybrid population originated from the
crosses of 5 founders from population one and 3 founders from
population two. In this case, n1 5 10 and n2 5 6, and vector v
has n 5 16 elements. The first 10 elements store the allelic values
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from population one and the last 6 elements store those from
population two. If a founder has an ID of 4, we know that it
comes from the first source population and the paternal and
maternal alleles of this founder are stored as the 7th and 8th
elements of v, respectively. In general, the two alleles of the ith
founder are stored at elements 2i 2 1 and 2i of v, respectively.
Since each allele of individual j can be traced back to one of the
founder alleles, we can express the phenotypic value of j by a
linear model,

y 5 1m 1 ~Ap 1 Am!v 1 «, [3]

where Ap or Am is an N 3 n indicator matrix connecting the
paternal or maternal alleles of all individuals to the founders.
Each row of Ap or Am contains one and only one nonzero (unity)
element. The positions of the nonzero elements in the matrices
correspond to the founder alleles that have been passed to the
mapping individual through their parents.

Let us define vi as the ith element of v. The distribution of vi
depends on which source population vi comes from. If vi comes
from population one, then vi ; N(b1, s1

2) is assumed. Otherwise,
we assume vi ; N(b2, s2

2). Define wi 5 1 if i comes from
population one and wi 5 0 otherwise. These wis are the source
population indicators. We can express vi by the following linear
model, vi 5 wib1 1 (1 2 wi)b2 1 ui, where ui is the deviation
of the ith allelic value from its corresponding population mean
and is distributed as ui ; N(0, wis1

2 1 (1 2 wi)s2
2). Let W be

a known n 3 2 matrix storing the source population indicators,
b 5 [b1, b2] and u be an n 3 1 vector for all the uis. Eq. 3 can
be rewritten in matrix notation as v 5 Wb 1 u. Substituting this
equation into 3, we have

y 5 1m 1 ~Ap 1 Am!Wb 1 ~Ap 1 Am!u 1 «. [4]

Let X 5 (Ap 1 Am)W and Z 5 Ap 1 Am. The above model is then
expressed as a typical mixed model:

y 5 1m 1 Xb 1 Zu 1 «, [5]

where b is the vector of fixed effects and u is the vector of random
effects, both being effects of QTL.

Paths of Gene Flow
Model 5 is different from the usual mixed model in that the
design matrices are unknown because they are determined by the
unobserved paths of gene flow. A complete description of the
paths of gene flow is called a genetic descent graph (4). A
probability statement of a genetic descent graph can be inferred
by using marker information. From the inferred probability, we
can draw a realization of the descent graph, which is then used
to infer QTL parameters. In this section, we introduce a recursive
algorithm to draw a descent graph.

Define ij
p 5 1, . . . , n as the founder allele identifier for the

paternal allele of individual j and ij
m 5 1, . . . , n as that for the

maternal allele of j. For example, if vj
p is a copy of the first

founder allele and vj
m is a copy of the fourth founder allele, then

ij
p 5 1 and ij

m 5 4. Using the founder allele identifiers, we can
rewrite Eq. 1 by

yj 5 m 1 v~ij
p! 1 v~ij

m! 1 «j . [6]

Instead of using the awkward expression vij

p for element ij
p of

vector v, here we adopt a pseudo code expression v(ij
p). We have

now formulated the problem of QTL mapping as that of finding
the appropriate subscripts of v that an individual can possibly
take. A complete description of the subscripts for all individuals
represents a genetic descent graph.

There may be many generations from j to the founders, and
thus it may be difficult to directly sample ij

p and ij
m. We use a

recursive algorithm to sample the founder allele identifiers. The
algorithm requires individuals to be entered into the pedigree in
a chronological order so that the allele identifiers of parents must
be sampled before their children. The recursive algorithm is
performed as follows:

If individual j is a founder and it is the ith founder, then ij
p 5

2i 2 1 and ij
m 5 2i for i 5 1, . . . , 1⁄2 n. If j is not a founder, we

use the following recursive equations:

ij
p 5 zj

pip
p 1 ~1 2 zj

p!ip
m ; ij

m 5 zj
mim

p 1 ~1 2 zj
m!im

m , [7]

where ip
p and ip

m are the allele identifiers for the father of j and
im
p and im

m are those for j’s mother. The allelic transmission
indicator, zj

p or zj
m, reflects the event of only one meiosis, and

thus is easy to sample. We have now turned the problem of
identifying the founder alleles into that of finding the allelic
transmission indicators from parents to children, a much simpler
problem.

The formation of a zygote requires two meioses that must be
inferred jointly. Define the ordered genotypes of the father and
mother of j by Qp

pQp
m and Qm

p Qm
m, respectively. Individual j can

take one of the four possible genotypes, {Qp
pQm

p , Qp
pQm

m, Qp
mQm

p ,
Qp

mQm
m}. Define another variable, Uj 5 1, . . . , 4, to indicate one

of the four ordered genotypes. For example, Uj 5 2 if j is of type
Qp

pQm
m. The values of zj

p and zj
m are determined solely by Uj using

zj
p 5 I(Uj51) 1 I(Uj52) and zj

m 5 I(Uj51) 1 I(Uj53), where I(Uj5k) 5 1 if
Uj 5 k and I(Uj5k) 5 0 otherwise.

We have now turned the problem of generating zj
p and zj

m into
that of generating Uj. The joint distribution of Uj with marker
genotypes is then used in the following Bayesian modeling.

Bayes and the Markov Chain Monte Carlo (MCMC) Algorithm
In Bayesian analysis, we first classify each item in the mixed
model into one of two classes. The class of observables (also
called data) includes the arrays of phenotypic values y and
marker genotypes M. The class of unobservables includes the
parameters of interest {m, b, s1

2, s2
2, s«

2, l}, where l is the position
of the QTL, and the missing values, U 5 {Uj} and u. Define the
collection of unobservables by u 5 {m, b, s1

2, s2
2, l, s«

2, U, u} and
use p(x) as a generic notation for probability density whose
actual form depends on the argument x rather than p. The joint
posterior probability density of u is

p~uuy, M! } p~y, Muu!p~u!, [8]

where

p~y, Muu! 5 p~yum, b, U, u, s«
2!p~MuU, l! [9]

is the likelihood and

p~u! 5 p~m!p~b!p~s1
2!p~s2

2!p~l!p~s«
2!p~Uul!p~uus1

2 , s2
2! [10]

is the joint prior. A uniform prior is chosen for each unobserv-
able except u, which takes p(uus1

2, s2
2) } 1y(s1

n1s2
n2) exp

{21⁄2u*G21u}, where G 5 diag{In1
s1

2, In2
s2

2}. In practice, the
priors should be customized according to the data structure and
the experience of the researcher. The uniform priors selected in
this study purely reflect our ignorance of the true parameters.
With the uniform priors, the likelihood will play a major role in
determining the posterior distribution of u and the results will be
more objective.

The actual Bayesian inference is to obtain the marginal
posterior probability density for each parameter (ui) rather than
the joint posterior density of all parameters. This requires
multiple integration, p(uiuy, M) 5 **u2i

p(ui, u2iuy, M)du2i,
where u2i stands for the array of remaining elements of u that
excludes ui. Unfortunately, there is no explicit form for the
multiple integration. Here we adopt the MCMC algorithm to
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generate samples from the joint posterior distribution from
which a marginal distribution can be easily inferred.

Given X and Z, model 5 is a standard mixed model. Bayesian
inference of variance components under the standard mixed
model has been extensively studied (e.g., refs. 5 and 6). Herein,
we describe only methods of evaluating the likelihood, generat-
ing U, and simulating b and u.

Evaluating the Likelihood. Conditional on their genotypic values,
the phenotypic values of any two individuals are independent.
Therefore, p(yuu) 5 )j51

N p(yjum, v(ij
p), v(ij

m), s«
2), where the

sampled values of founder allele identifiers, ij
p and ij

m, are used
to calculate the genotypic value of j. We evaluate the likelihood
value for each individual immediately after its founder allele
identifiers have been sampled (described in the next paragraph).
Therefore, the algorithm requires individuals to be entered into
the pedigree in the chronological order of their birth so that the
likelihoods of parents are always evaluated before their children
(7).

Sampling Founder Allele Identifiers. Founder allele identifiers are
the keys of the proposed method. Each allele is connected to one
of the founder alleles through its founder allele identifier.
Sampling allele identifiers is accomplished by sampling U, which
is then converted into zj

p and zj
m, which are eventually used for

computing the founder allele identifiers.
We use a Gibbs sampler (8, 9) algorithm to sample Uj from its

conditional posterior distribution. For simplicity, we describe
only the posterior probability conditional on the genotypes of
two flanking markers. Similar to Uj, we denote the genotype
indicator vectors for the left and right markers by Mj

L and Mj
R,

respectively. Then the posterior distribution of Uj is

p~Uj 5 kuyj , Mj
L 5 t , Mj

R 5 s!

5
p~yjuu!p~Mj

L 5 t , Mj
R 5 suUj 5 k, l!p~Uj 5 k!

Ok 5 1
4 p~yjuu!p~Mj

L 5 t , Mj
R 5 suUj 5 k, l!p~Uj 5 k!

[11]

for k, t, s 5 1, . . . , 4. Calculation of p(yjuu) is straightforward.
Conditional on Uj, Mj

L and Mj
R are independent so that p(Mj

L 5
t, Mj

R 5 suUj 5 k, l) 5 p(Mj
L 5 tuUj 5 k, l)p(Mj

R 5 suUj 5 k,
l), where p(Mj

L 5 tuUj 5 k, l) or p(Mj
R 5 suUj 5 k, l) is obtained

from the following transition matrix:

PMU

5 3
~1 2 cMU!2 ~1 2 cMU!cMU ~1 2 cMU!cMU cMU

2

~1 2 cMU!cMU ~1 2 cMU!2 cMU
2 ~1 2 cMU!cMU

~1 2 cMU!cMU cMU
2 ~1 2 cMU!2 ~1 2 cMU!cMU

cMU
2 ~1 2 cMU!cMU ~1 2 cMU!cMU ~1 2 cMU!2

4 ,

where cMU is the recombination fraction between the QTL and
the left or right marker. It is calculated from l by using the
Haldane (10) map function. Finally, we take the Mendelian prior
p(Uj 5 k) 5 1y4 for k 5 1, . . . , 4 and j 5 1, . . . , N.

Since only two flanking markers are used to calculate the
posterior probability of Uj, the approach is called interval
mapping (1). In pedigree analysis, the markers are usually not
fully informative. In this situation, we generate a realization of
Mj

R and Mj
L based on loci f lanking them. A flanking locus can be

a marker or a QTL, depending on which one is closer to the
marker of interest. In fact, our computer program has been
equipped with this utility. Alternatively, we can take the multi-
point method to infer the probability of Uj (11). The multipoint
method can improve the mixing property of the Markov chain,
but it is hard to implement in the program. However, both
methods would ultimately generate the same result if the chains
are sufficient long.

Updating Values of the Founder Alleles. The effect of the ith founder
allele (i 5 1, . . . , n) has been expressed as a fixed effect, wib1 1
(1 2 wi)b2, plus a random deviation, ui (see Eq. 3). Because wi
is known, updating the effects of founder alleles is actually
accomplished by updating b and u. Although b1 and b2 can be
drawn independently if an informative joint prior is chosen, to
increase the speed of convergence, we set b1 5 0 and draw only
b2. The Metropolis–Hastings algorithm (12, 13) is used here for
drawing b2. Define ui

(t) 5 b2
(t) as the current value of b2 and u2i

(t)

as the current values of the remaining unobservables. We want
to generate a ui from the following conditional posterior distri-
bution, p(uiuy, M, u2i) } p(y, Muui, u2i)p(ui, u2i). A random walk
Metropolis algorithm is used to generate the new value of ui.
First, a u*i is proposed from u*i ; N(ui

(t), D), where D is a
predetermined proposal variance for b2, a small positive value
(tuning parameter). The transition probability from ui

(t) to u*i is
q(u*i, ui

(t)) 5 N(ui
(t), D), which is identical to q(ui

(t), u*i) 5 N(u*i,
D). Therefore, the acceptance probability for the candidate
value of u*i is min{1, a}, where a is

a 5
p~u*iuy, M, u2i

~t! !q~ui
~t! , u*i!

p~ui
~t!uy, M, u2i

~t! !q~u*i , ui
~t!!

5
p~u*iuy, M, u2i

~t! !

p~ui
~t!uy, M, u2i

~t! !
.

[12]

If u*i is accepted, ui
(t11) 5 u*i, otherwise, ui

(t11) 5 ui
(t) and no

action will be taken.
The random deviations, u, are drawn one pair at a time. In this

case, ui 5 {u2i21, u2i} is a 2 3 1 vector for i 5 1, . . . , 1⁄2 n. The
proposal value is sampled from a joint bivariate normal distri-
bution, u*i ; N(ui

(t), I2d), where d is the proposal variance
common to both u2i21 and u2i. The pair of us are accepted or
rejected simultaneously according to the Metropolis–Hastings
rule (see Eq. 12).

The population mean, the variance components, and the QTL
position are updated by following the same Metropolis–Hastings
rule. Detailed steps are described in ref. 14, in which the marker
linkage phases and the number of QTL are also treated as
unknown variables. Note that sampling the number of QTL
involves change in the dimension of the model. We adopted the
reversible jump MCMC algorithm developed by Green (15) to
add or delete a QTL in each MCMC step.

A Simulation Study
For illustration, we simulated a hybrid population derived from
the cross of two outbred populations. Ten parents were randomly
selected and genotyped from each population and formed a
complete cross experiment in which each parent from one
population was mated to every parent from the other population,
leading to a total of 100 full-sib families in the F1 generation. One
individual from each full-sib family was genotyped and pheno-
typed. From the 100 F1 individuals, we formed 50 pairs of
matings in a completely random fashion. Each mating pair
produced 10 progenies, leading to a total of 500 F2 individuals.
The total sample size in the three-generation pedigree was 500 1
100 1 20 5 620. Note that all the families are interrelated,
forming a large complicated pedigree with a total of 20 founders.

We then simulated two chromosomes 90 and 60 centimorgans
(cM) long, respectively. The marker coverage is one marker in
every 10 cM. Each marker allele in the founders was sampled
from one of six equally frequent alleles. We put two QTL on
chromosome I at positions 25 cM and 77 cM, respectively, and
one QTL on chromosome II at position 32 cM. The effects of the
three QTL are given in Table 1. The environmental error is
distributed as N(0, 1). Given this setup, the first QTL explains
24% of the phenotypic variance, all due to the between-
population variance. The second QTL explains 23% of the
phenotypic variance, due to the between-population variance
and the variance within population one, and the third QTL
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explains 15% of the phenotypic variance, due to only the
within-population variances. The QTL allelic effects in the
founders were sampled from normal distributions. One data set
was simulated and analyzed by using two different models, the
mixed model and the fixed model. To implement the fixed model
analysis, we simply added one restriction to the same computer
program: s1

2 5 s2
2 5 0 for all QTL fitted to the model. The

analysis was then identical to QTL mapping in an F2 line cross.
For the mixed model analysis, the MCMC was started with no

QTL in the model. The distribution of the number of QTL
appeared to reach its stationary distribution quickly. The total
length of the chain was 106 cycles. With the removal of 1,000
cycles for the burn-in period and the saving of one observation
for every 50 cycles, the total number of saved data points was
20,000. These observations were subject to the post-Bayesian
analysis. We recorded the number of hits by QTL within a short
interval, say 1 cM, of the chromosome and defined the propor-
tion of the hits among the posterior sample as the QTL intensity.

We then plotted the QTL intensity against the chromosomal
position and formed a QTL intensity profile for each chromo-
some (see Fig. 1 a and b). The intensity profiles indicated three
possible QTL. The estimated positions of the QTL are close to
the true locations. For each effect, we calculated the average
QTL effect for each short interval (1 cM long). We then plotted
the average effect against the chromosomal position, forming a
profile for each QTL effect (see Fig. 1 c and d). As Sillanpää and
Arjas (16) stated, the effect profile is meaningful only in the
region where the QTL intensity is reasonably high. For example,
the first QTL intensity is concentrated on (10, 30) cM on
chromosome I. The population difference of the first QTL shows
an average effect around 0.75 in that region. Similarly, the
second QTL effect shows an average effect around 0.60 in the
region corresponding to the peak of the second QTL. Interest-
ingly, the population difference profile shows an average effect
around 20.5 in the region between the two QTL. However, this
region was rarely hit by QTL, and thus the negative effect does
not mean anything.

We proposed a method to partition the QTL intensity profile
into various components, each corresponding to one specific
effect. These effect-specific intensity profiles are also called the
weighted intensity profiles because they are the QTL intensity
weighted by the effects. The weighted profiles allow us to
visualize the sources of genetic variation for the detected QTL.
For instance, the weighted profiles for chromosome I (Fig. 2a)
show that the two QTL are primarily caused by the population
difference. In contrast, the weighted profiles for chromosome II
(Fig. 2b) show that the QTL is caused primarily by the variance
within population one, rather than by the population difference.

For the fixed model analysis in which s1
2 5 s2

2 5 0 has been
assumed, only two QTL were detected (Fig. 3a) and the third
QTL on chromosome II was completely missing (Fig. 3b). By

Fig. 1. QTL intensity profiles (a and b) and profiles
of the effects (c and d) for the mixed model analysis.
Markers (codominant) are evenly distributed with
10 cM apart. (a and c) Chromosome I. (b and d)
Chromosome II. The true positions of the three QTL
are pointed to by the arrows on the horizontal axes.
The solid, dashed, and dotted lines represent for the
population difference b 5 b2 2 b1, variance
within population one s1

2, and variance within pop-
ulation two s2

2, respectively.

Table 1. Parametric values used in the simulation study

Parameter QTL 1 QTL 2 QTL 3

Location, cM 25 (I) 77 (I) 32 (II)
b 5 b2 2 b1 0.80 0.55 0.00
s1

2 0.00 0.30 0.30
s2

2 0.00 0.00 0.10
sA

2 5 b2 1 (s1
2 1 s2

2) 0.64 0.60 0.40
h2 0.24 0.23 0.15

The mean of the first population for each locus is set to zero so that the
population difference is b 5 b2 2 b1 5 b2. The proportion of the phenotypic
variance explained by each QTL is expressed by h2 5 sA

2 y(sA
2 1 s«

2), where s«
2

5 1.0.
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ignoring the within-population segregation, we not only missed
the third QTL but also got a confused estimate of the position
for the second QTL (Fig. 3a). The posterior mean of the QTL
number is 2.4 rather than 2.0. This is because 28% of the
posterior sample shows three QTL. The position of the third
QTL detected is highly concentrated at the end (80–90 cM) of
chromosome I rather than on chromosome II. This faulty QTL
is essentially due to the split of the second QTL, another piece
of evidence that the fixed model is inferior. The effect profiles
for the fixed model analysis are given in Fig. 3 c and d. The
weighted intensity profiles are given in Fig. 4, which shows no
sign of QTL on chromosome II.

Bayesian mapping allows the number of QTL to change. This
involves the change in the dimension of the model. We adopted
the reversible jump algorithm of Green (15) to infer the posterior
distribution for the number of QTL (see Table 2). The posterior
mean of the QTL number in the mixed model analysis is ;3.0,
which coincides with the true value. The posterior mean in the
fixed model analysis is ;2.4, which is obviously inferior to the
mixed model analysis.

Discussion
We recently proposed a Bayesian mapping method under the
random model framework. This method can analyze data col-
lected from arbitrary mating designs, including selfed and re-
lated founders, without any approximation (14). The method,
however, is a pure random model approach and applicable only
to situations where the founders are randomly sampled. The
mixed model approach developed in this study is an extension of
our random model to handle populations with a hybrid origin.
Most of the sampling techniques used in this study—e.g.,
sampling the number and locations of QTL—have been de-
scribed by Yi and Xu (14).

Fig. 2. Weighted QTL intensity profiles for the mixed model analysis. (a)
Chromosome I. (b) Chromosome II.

Fig. 3. QTL intensity profiles (a and b) and effect
profiles (c and d) for the fixed model analysis. (a
and c) Chromosome I. (b and d) Chromosome II.
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Bayesian analysis is preferable for its convenience and flexi-
bility in regard to using pedigree data and mapping multiple
QTL (17). It takes full account of the uncertainty associated with
all unknowns, including the number and locations of QTL, and
the genotypes of QTL. Earlier works of Bayesian mapping
include Satagopan et al. (18) and Sillanpää and Arjas (16) for line
crossing data, and Uimari and Hoeschele (19), Heath (20), and
Bink and van Arendonk (21) for pedigree data. The works for
line crossing data always use the fixed model approach. The
works for pedigree data usually use the random model, but most
often assume two alleles (20). When multiple alleles are as-
sumed, the genotypes of QTL are not sampled, but the condi-
tional expectations of allelic IBD (identical-by-descent) are
calculated and used in place of the covariance matrix at the QTL
of interest (21). This expected IBD method is an approximation
to the Bayesian analysis because it uses an approximate likeli-
hood. Nonetheless, the above Bayesian methods cannot handle

data with arbitrarily complicated mating designs, especially when
selfing is involved in pedigree data.

The mixed model approach provides a unified QTL mapping
algorithm. It can analyze data collected from any complicated
mating design. As demonstrated in the simulation study, when
the within-population variances are set to zero, the algorithm
becomes a fixed model approach and automatically analyzes a
typical F2 cross family. On the other hand, if we disregard the
population difference and simply set b 5 0, the algorithm will
turn into a random model approach and automatically analyze an
outbred population.

Under the mixed model framework, we treat the mean effects
of the source populations as fixed effects and the allelic values
within each population as random effects. If the number of
founders within each population is small, a meaningful estimate
of the within-population variance is impossible. In this case, the
allelic values of the founders may be treated as fixed effects with
the allelic variance, sk

2, treated as a prior variance. As a
consequence, the model is considered as a fixed model. If the
mapping population is derived from the hybrid of many source
populations, it is not convenient to estimate the bks. Instead, we
can treat bk as a random variable sampled from a N(0, sb

2)
distribution. In this case, sb

2 is one of the parameters of interest.
The within-population variances may not be estimated sepa-
rately for individual populations; instead, they may be pooled as
a consensus estimate of the within-population variance. This
results in a hierarchical random model analysis of QTL. There-
fore, the difference between a fixed model and a random model
is vague in the context of Bayesian mapping. When the variances
of effects are treated as hyperparameters (prior variances), the
model is fixed. If the variances of effects are treated as the
parameters of interest, the model is random. Both the fixed and
random models can be implemented in the same mixed model
computer program, with one additional statement to turn onyoff
the fixedyrandom option. The proposed mixed model approach
provides a unified QTL mapping algorithm suitable for all kinds
of populations.
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Fig. 4. Weighted QTL intensity profiles for the fixed model analysis. (a)
Chromosome I. (b) Chromosome II.

Table 2. The posterior distributions of the number of QTL under
the mixed and fixed model analyses

Model

Relative frequency of QTL no.

0 1 2 3 4 5 6

Mixed 0.000 0.000 0.132 0.743 0.115 0.010 0.000
Fixed 0.000 0.000 0.665 0.277 0.052 0.006 0.000

The posterior means for the mixed and fixed models are 3.0 and 2.4,
respectively, while the true number of QTL is 3.
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